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Stanford, California 94305

July 1983

ABSTRACT

This report forms the user's guide for Version 1.1 of SOL/NPSOL, a set of Fortran subroutines

* designed to minimize an arbitrary smooth function subject to constraints, which may include

simple bounds on the variables, linear constraints and smooth nonlinear constraints. (NPSOL
may also be used for unconstrained, bound-constrained and linearly constrained optimization.)

The user must provide subroutines that define the objective and constraint functions and their

gradients. All matrices are treated as dense, and hence NPSOL is not intended for large sparse

problems.

NPSOL uses a sequential quadratic programming (SQP) algorithm, in which the search direc-

tion is the solution of a quadratic programming (QP) subproblem. The algorithm treats bounds,

linear constraints and nonlinear constraints separately. The Hessian of each QP subproblem

is a positive-definite quasi-Newton approximation to the Hessian or an augmented Lagrangian

function. The steplength at each iteration is required to produce a sufficient decrease in an aug-

mented Lagrangian merit function. Each QP subproblem is solved using a quadratic programming

package with several features that improve the efficiency of an SQP algorithm. _

tThe package SOL/NPSOL is available from the Office of Technology Licensing, 105 Encina Hall,

Stanford University, Stanford, California, 94305.

The material contained in this report is based upon research supported by the U.S. Department

of Energy Contract DE-AC03-76SF00326, PA No. Dr-AT03-76ER72018; National Science Foun-

dation Grants MCS-7926009 and ECS-8012974; the Office of Naval Research Grant N00014-75-

C-0267; and the U.S. Army Research Office Contract DAAG29-79-C-01 10.
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1. PURPOSE NPSOL/I

1. PURPOsE 2

SOL/NPSOL is a collection of Fortran subroutines designed tc solve the nonlinear program-
ming problem - the minimization of a smooth nonlinear function subject to a set of constraints

on the variables. The problem is assumed to be stated in the following form:

NP minimize F(z)

subject to I _ AZ < u,

where F(z) is a smooth nonlinear function, A, is a constant matrix, and c(z) is a vector of smooth
nonlinear constraint functions. The matrix AL and the vector c(z) may be empty. Note that upper
and lower bounds are specified for all the variables and for all the constraints. This form allows
full generality in specifying other types of constraints. In particular, the i-th constraint may
be defined as an equality by setting f, = ui. If certain bounds are not present, the associated
elements of I or u can be set to special values that will be treated as -o or +00.

If no nonlinear constraints Pre present, it is generally more efficient to use a package specifically
designed for linearly constrained problems. In particular, when F is linear or quadratic, the
LPSOL or QPSOL packages should be used (Gill et al., 1983a); for a general function F with
only linear constraints, the LCSOL package is appropriate (Gill et al., 1983c). If the problem
is large and sparse, the INOS/AUGMENTED package (Murtagh and Saunders, 1980, 1982)
should be used, since NPSOL treats all matrices as dense.

The user must supply an initial estimate of the solution to NP, and subroutines that define
F(z), c(z) and their first derivatives. The level of printed output is controlled by the user (see
the parameter MSGLVL in Section 4).

NPSOL is based on subroutines from Version 3.1 of the SOL/QPSOL quadratic programming
package; the documentation of this version of QPSOL (Gill et al., 1983a) should be consulted in

conjunction with this report. NPSOL contains approximately 9000 lines of ANSI (1966) Standard

Fortran, of which 47% are comments.

* * . * **i*- .- **.- -.

- -------------- -



NPSOL/2 2. DESCRIPTION

12. DESCRIPTION

The method used to solve NP is a sequential quadratic programming (SQP) method. SQP

methods were popularized mainly by Biggs (1972), Han (1976) and Powell (1977); for an overview,
see, e.g., Fletcher (1981), Gill, Murray and Wright (1981) and Powell (1982). Let zo denote the

initial estimate of the solution. During the k-th "major iteration" of NPSOL (k = 0, 1,... ), a

new estimate is defined by

Zk+I = Xk + OtkPk,

where the vector Pk is the solution of a QP subproblem, to be described below. The positive

scalar ak is chosen to produce a sufficient decrease in an augmented Lagrangian merit function
(see Schittkowski, 1981); the procedure that determines ak is called the line search.

The QP subproblem that defines p is of the form

QP minimize g p + 1pHppr=*- 2

subject to 1 < -.

The vector g in QP is the gradient of F at zh. The matrix H is a positive-definite quasi-Newton
approximation to the Hessian of an augmented Lagrangian function. It is represented as H

RTR, where R is upper triangular, and is updated after every major iteration.
Let mL denote the number of linear constraints (the number of rows in AL), and let m,

denote the number of nonlinear constraints (the dimension of c(z)). The matrix A in QP has
mL + mN rows, and is defined as (AA

A,

where A, is the Jacobian matrix of c(z) evaluated at Zk. Let t in NP be partitioned into three
sections: the first n components (denoted by 1.), corresponding to the bound constraints; the

next m, components (denoted by 1L), corresponding to the linear constraints; and the last mN

components (denoted by IN), corresponding to the nonlinear constraints. The vector t in QP is
partitioned in the same way, and is defined as

ta--aXk, ft= L,. -ALzk, and 1N -- , - Ck,

where ck is c(z) evaluated at zk. The vector f! is defined in an analogous fashion.
In general, solving the subproblem QP for pk is itself an iterative procedure. Hence, a

"minor iteration" or NPSOL corresponds to an iteration within the QP algorithm. Note that

the functions F(z) and c(z) are not evaluated during the solution of the subproblem. The total

C.
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2. DESCRIPTION NPSOL/3

number of function evaluations required to solve a well-behaved problem will usually be similar

to the number of major iterations.
The problem QP is solved using subroutines from the SOL/QPSOL package, which is described

in detail in Gill et &I. (1983a), and was specifically designed to be used within an SQP algorithm

for nonlinear programming. In particular, two common difficulties associated with SQP methods
are alleviated by certain features of the QPSOL subroutines.

First, it may happen that the QP subproblem is infeasible, yet feasible points exist with

respect to the nonlinear constraints. (Throughout this report, we assume that "feasibility" is

defined by a set of tolerances provided by the user in the array FEATOL; see Section 4.) The
strategy used by NPSOL to treat an infeasible subproblem is the following. If there is no feasible

point with respect to the bounds and linear constraints of the original problem, the infeasibility is

inherent in the problem, and hence NPSOL terminates. Otherwise, the infeasibility results from

the linearized nonlinear constraints; the least infeasible point is then computed, the appropriate
constraint bounds are (temporarily) relaxed, and a relaxed quadratic program is solved for pk.

Second, it is useful in an SQP algorithm to be able to use the prediction of the active set
from each QP subproblem to solve the next subproblem more efficiently. This benefit is achieved

in NPSOL by a "hot start" feature that allows the initial working set and part of its factorization

to be specified. Within NPSOL, the prediction of the active set from one QP subproblem is used

as the "hot start" estimate of the working set for the next QP. In practice, this means that the

QP subproblems near the solution reach optimality in only one iteration. Furthermore, separate
treatment of linear constraints means that it is usually possible to save work in performing the

factorization of the working set at the beginning of the QP (since the rows of A corresponding to

the linear constraints are unchanged).

The algorithm used in NPSOL will be discussed in a forthcoming report. Details of the

algorithm of QPSOL are given in Gill et a. (1983b).

.5-!



*NPSOL14 3. SPECIFICATION

13 SEIFICATION

SUBROUTINE UPSOL (ITMAX, MSGLVL. N.

NCLIN. MCNLN. NCTOTL. NROWA, NROWJ, NROIR.

BIGEND, EPSAP, ETA, FTOL.

A. BL. BU, FEATOL.

COMFUM. OBJFUN. COLD. FEALIN. ORTHOG.

INFORM. ITER, ISTATS,

C. CJAC. CLANDA. OBJF. OBJGRD. R. X.

IW. LEMIW. V. LENI

EXutENAL COMFUN. OBJFUN

LOGICAL COLD. FEALIN. ORTHOG

INTEGER ITMAX. MSGLYL, N. XCLIN, MCMLN. NCTOTL,

NROWA. NROWJ. NROBR, INFORM. ITER. LEI. LENW

INTEGER ISTATE (NCTOTL). IW (LEMIW)

REAL BIGBND. EPSAF. ETA. FTOL. ODJF

REAL A(NROWA.M). BL(MCTOTL). BU(MCTOTL). FEATOL(NCTOTL).

C(NROWJ) * CJAC(NROWJ.M) * CLAMDA(MCTOTL).

OBJGRD(M) * R(NROWR.M) * X(I) * W(LENW)

Note: Here and elsewhere, the specification or a parameter as REAL should be interpreted as

* working precision, which may be DOUBLE PRECISION in some circumstances.
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4. INPUT PARAMI.,TERS NISOI,/5

14. INPUT PARAMETERS

IIIX is an upper bound on the number of major iterations to be performed. Unless the
problem is known to be exceptionally difficult, a sensible initial choice for I1TAX is 50.

NSGLVL indicates the amount of intermediate output desired (see Section 9 for a description of
the printout). All output is written to the file number NOUT (see subroutine MCHPAR in

Section 11). MSGLVL is interpreted as a four-digit number. Its first two digits indicate
the level of intermediate output from the quadratic programming routines; the second

two digits indicate the level of intermediate output from NPSOL. The QP printout
levels are defined in Gill et al. (1983a); if MSGLVL < 100, there is no QP output. When

the last two digits ofMSGLVL > 10, each level includes the printout from all lower levels.

The printout corresponding to each value of the last two digits of MSGLVL is defined as
follows:

Value Definition

0 No output.

1 The final solution only.

5 One brief line of output for each major iteration (no printout of the

final solution).

> 10 The final solution and one brief line of output for each major iteration.

> 15 At each iteration, the arrays X and ISTATE, and the indices of the free

variables.

* 20 At each iteration, the nonlinear constraint values (the array C), the

linear constraint values (ALZ), and estimates of the Lagrange multi-
pliers.

* 30 At each iteration, the diagonal elements or the matrix T associated
with the TQ factorization of the working set, and the diagonals of the
matrix R (the Cholesky factor of the I lessian approximation).

* 80 Debug output from NPSOL.

99 Debug output from the line search.

For example, MSGLVL = 10 will produce a summary of results for each major iteration

and a full printout or the final solution; NzIGILVL = 510 will produce the same printout,
as well as a summary of eac, inor (0- .teration.

N is the number of variables, i.e., the dimension of X (N must be positive).

bi
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NCLIN is the number of general linear constraints in the problem (NCLIN may be zero).

NCNLN is the number of nonlinear constraints in the problem (NCNLN may be zero).

" NCTOTL must be set to N + NCLIN + NCNLN.

NROWA is the declared row dimension of the array A (IIROWA must be at least I and at least

NCLIN).

NROWJ is the declared row dimension of the array CJAC and the length of the array C (NROWJ

must be at least 1 and at least NCNLN).

NROWR is the declared row dimension of the array R (NROWR must be at least N).

BIGBND is a positive real variable whose magnitude denotes an "infinite" component of t and

u. Any upper bound greater than or equal to BIGBND will be regarded as plus infinity

(and similarly for a lower bound less than or equal to -BIGBND).

EPSAF is a positive quantity that should be a good bound on the absolute error in computing

F(x) at the initial point. For many simple functions, EPSAF is of the order of fIF(X)I,

where e. is the machine precision. A discussion of EPSAF is given in Chapter 8 of Gill,

Murray and Wright (1981).

ETA is a number satisfying 0 < ETA < 1, which controls how accurately the value or

approximates a univariate minimum or the merit function along ph (the smaller the

value of ETA, the more accurate the line search). The recommended value of ETA for

nonlinearly constrained problems is 0.9, which corresponds to a relaxed line search.

If the problem is unconstrained, bound-constrained, or linearly constrained, a smaller

value of ETA will tend to require more function evaluations, but fewer major iterations.

FTOL is a positive tolerance (FTOL < 1) that indicates the number of figures of accuracy

desired in the objective function at the solution. For example, if FTOL is 10-6 and

NPSOL terminates successfully, the computed solution should have approximately six

correct figures in F. FTOL should never be less than machine precision.

A is a real array or declared dimension (NROWA, N), corresponding to A,. in the problem

specification NP (Section I). The i-th row or A, i = I to NCLIN, contains the coeilicients

of the i-th general linear constraint. Ir NCLIN is zero, A is not accessed.
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4. INPUT I'AItAMIPFIMRS NI'SOL/7

BL is a real array of dimension NCTOTL that contains the lower bounds for all the constraints,

in the following order (which is also observed for BU, CLAMDA, FEATOL and ISTATE). The

first N elements of BL contain the lower bounds on the variables. If NCLIN > 0, the next

NCLIN elements of BL contain the lower bounds for the general linear constraints. If

NCNLN > 0, the next NCNLN elements of BL contain the lower bounds for the nonlinear

constraints. In order for the problem specification to be meaningful, it is required that

BL(j) !5 BU(j) for all j. To specify a non-existent lower bound for the j-th constraint

(i.e., I = -oo), the value used must satisfy BL(j) < -BIGBND. To specify the j-th

constraint as an equality, the user must set BL(j) = BU(j) = /, say where 131 <

BIGBND.

BU is a real array of dimension NCTOTL that contains the upper bounds for all the con-

straints, in the same order described above for BL. To specify a non-existent upper

bound (i.e., ui = +oo), the value used must satisfy BU(j) _! BIGBND.

FEATOL is a real array of dimension NCTOTL containing positive tolerances that define the

maximum permissible violation in each constraint in order for a point to be considered

feasible, i.e. constraint j is considered satisfied if its violation does not exceed FEATOL(j).

The ordering of the components of FEATOL is the same as that described above under BL.

Note that FEATOL(j) is a bound on the absolute acceptable violation. For example, if the

data defining the constraints are of order unity and are correct to about 6 decimal digits,

it would be appropriate to choose FEATOL(j) as 10-6 for all relevant j. In general, the

elements of FEATOL should be chosen as the largest possible acceptable values, since the

algorithm of NPSOL becomes less likely to encounter difficulties with ill-conditioning

and degeneracy as the components of FEATOL increase. A warning message is printed

if any component of FEATOL is less than machine precision; the user must not set any

element of FEATOL to zero. A detailed discussion of FEATOL is given in Gill et a]. (1983b).

CONFUN is the name of a subroutine that calculates the vector c(x) of nonlinear constraint

functions and its Jacobian for a specified n-vector x. CONFUN must be declared as

EXTERNAL in the routine that calls NPSOL. If there are no nonlinear constraints (NCNLN

- 0), CONFUN will never be called by NPSOL. If there are nonlinear constraints, NPSOL

always calls CONFUN and OBJFUN together, in that order.

The specification of CONFUN is:

SUBROUTINE CONFUN( MODE, NCNLN, N. NROWJ, X. C. CJAC, NSTATE )

INTEGER MODE, NCNLN, N, NROWJ, NSTATE

REAL X(N), C(NROWJ), CJAC(NROWJ,N).

The actual parameters NCNLN, N, and NROWJ input to CONFUN will always be the

same Fortran variables as those input to NPSOL. They must not be altered by CONFUN.

I.

.



NP801,I8 4. INPUIT IPARtAMIErI.S

MODE is a flag that the user may set within CONFUN to indicate a failure in the

evaluation of the nonlinear constraints. On entry to CONFUN, MODE is always nonnegative.

If MODE is negative on exit from CONFUN, the execution or NPSOL will be terminated with

INFORM set to MODE.
X contains the vector of variables z at which the constraint functions are to be

evaluated. The elements of X must not be altered by CONFUN.

C should contain the nonlinear constraint values ci(z), i = I to NCNLN, on exit from

CONFUN.
CJAC should contain the Jacobian matrix of the nonlinear constraint functions on

exit from CONFUN. The i-th row of CJAC contains the gradient of the i-th nonlinear

constraint, i.e. CJAC(i,j) is the partial derivative of ci with respect to z,, i = I to

NCNLN, j = 1 to N. If CJAC contains any constant elements, a saving in computation

can be made by setting them one time only, when NSTATE = 1 (see below).

NSTATE is set to one by NPSOL on the first call of CONFUN, and is zero for all

subsequent calls. Thus, if the user wishes, NSTATE may be tested within CONFUN in

order to perform certain calculations one time only. For example, the user may read

data or initialize COMMON blocks when NSTATE = 1. In addition, the constant elements

of CJAC can be set in CONFUN when NSTATE = 1, and need not be defined on subsequent

calls.

OBJFUN is the name of a subroutine that calculates the objective function F(z) and its gradient

for a specified n-vector x. OBJFUN must be declared as EXTERNAL in the routine that

NPSOL.

The specification of OBJFUN is:

SUBROUTINE OBJFUN( MODE, N, X. OBJF, OBJGRD. NSTATE )

INTEGER MODE, N. NSTATE

REAL OBJF, X(N), OBJGRD(N).

The actual parameter N input to OBJFUN will always be the same Fortran variable

as that input to NPSOL, and must not be altered by OBJFUN.
MODE is a flag that the user may set within OBJFUN to indicate a failure in the

evaluation of the objective runction. On entry to OBJFUN, MODE is always nonnegative.

If MODE is negative on exit from OBJFUN, the execution of NPSOL is terminated with

INFORM set to MODE.
X contains the vector of variables x at which the objective function is to be evaluated.

The X array must not be altered by OBJFUN.

OBJF should contain the value of the objective function I"(t) on exit from OBJFUN.

OBJGRD should contain the gradient vector of the objective function. The j-Lh

component of OBJGRD contains the partial derivative of F with respect to the j-th

variable.
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NSTATE is set to one by NPSOL on the first call or OBJFUN, and to zero on all

subsequent calls. Thus, if the user wishes, NSTATE may be tested in order to perform

certain calculations only on the first call of OBJFUN - e.g., read data or initialize COMMON

blocks. Note that if there are any nonlinear constraints, CONFUN and OBJFUN are always

called together, in that order.

COLD is a logical variable that indicates whether the user has specified an initial estimate of

the active set of constraints. If COLD is .TRUE., the initial working set is determined by

the first QP subproblem. If COLD is .FALSE. (a "warm start"), the user must define the

array ISTATE (which gives the status of each constraint with respect to the working set)

and the matrix R (the Cholesky factor of the initial Hessian approximation). The warm

start option is particularly useful when NPSOL is restarted at the point where an earlier

run terminated.

FEALIN is a logical variable that indicates whether the starting point for the SQP method

should first be made feasible with respect to the bounds and linear constraints of NP.

If FEALIN is .TRUE., the algorithm will determine (if possible) a point that is feasible

with respect to the bounds and linear constraints before beginning the SQP iterations

(where "feasible" is defined by the array FEATOL; see above). This setting of FEALIN

ensures that all iterates within the SQP algorithm will be feasible with respect to the

bounds and linear constraints (this may be essential in certain applications). If FEALIN

is .FALSE., the SQP method will begin with the user-specified initial value of X. In this

case, the iterates will not necessarily be feasible with respect to the linear constraints

of the original problem (unless the original point is feasible). In general, we recommend

a value of .TRUE. for FEALIN.

ORTHOG is a logical variable that indicates whether orthogonal transformations will be used in

the QP algorithm to compute and update the TQ factorization of the working set

AQ= (0 T),

where A is a submatrix of A and '' is reverse-triangular (see Gill ct al., 1982). If ORTHOG

is .TRUE., the TQ factorization is computed using Householder reflections and plane

rotations, and the matrix Q is orthogonal. If ORTHOG is .FALSE., stabilized elementary

transformations are used to maintain the factorization, and Q is not orthogonal. A rule

of thumb in making the choice is that orthogonal transformations require more work,

but provide greater numerical stability. Thus, we recommend setting ORTHOG to .TRUE.

in any of the following situations: the problem is reasonably small; the functions are

highly nonlinear; the active set is ill-conditioned; or the time required to compute the

TQ ractorization is not significant compared to the evaluation of the problem functions.
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Otherwise, setting ORTHOG to .FALSE. will often lead to a reduction in solution time

with negligible loss of reliability.
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6. INPUT/OUTPUT PARAMETERS

ISTATE is an integer array of dimension NCTOTL that indicates the status of every constraint

with respect to the current prediction of the active set. The ordering of ISTATE is the

same as that described above for BL, i.e., the first N components of ISTATE refer to the

bounds on the variables, the next NCLIN components refer to the linear constraints, and

the last NCNLN components refer to the nonlinear constraints. The significance of each

possible value of ISTATE(j) is as follows:

ISTATE(j) Meaning

-2 This constraint (or its linearization) violates its lower bound by more

than FEATOL(j) in a QP subproblem.

-1 This constraint (or its linearization) violates its upper bound by more

than FEATOL(j) in a QP subproblem.

0 The constraint is not in the predicted active set.

1 This inequality constraint is included in the predicted active set at its

lower bound.

2 This inequality constraint is included in the predicted active set at its

upper bound.

3 The constraint is included in the predicted active set as an equality.

This value of ISTATE can occur only when BL(j) = BU(j).

If COLD - .TRUE., ISTATE need not be set by the user. However, when COLD is

.FALSE., every element of ISTATE must be set to one of the values given above to define

a suggested prediction of the active set (which will be used as the initial working set in

the first QP subproblem). The most likely values are:

ISTATE(j) Meaning

0 The corresponding constraint should not be in the initial working set.

1 The constraint should be in the initial working set at its lower bound.

2 The constraint should be in the initial working set at its upper bound.

3 The constraint should be in the initial working set as an equality. This

value must not be specified unless BL(j) = BU(j). The input values 1,

2 or 3 of ISTATE(j) all have the same effect when BL(j) = BU(j).

On exit from NPSOL, the values in the ISTATE array indicate the composition of the

active set or the final QP subproblem.

- . , - ,- ;. . . ,' .. - . - - . , . . , .- .. .. •. ..
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R is a real array of declared dimension (NROWR,N) that contains the upper-triangular

Cholesky factor of the current approximation of the Hessian of the Lagrangian function.

If COLD is .TRUE., the array R need not be initialized by the user. If COLD is .FALSE., R

must contain an appropriate upper-triangular matrix.

X is a real array of dimension N that contains the current estimate of the solution. On

entry to NPSOL, X must be defined; on exit from NPSOL, X contains the final estimate of

the solution.

. . . . . . . . . . .
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IS. OUTPUT PARAMETERS

INFORM is an integer that indicates the result of NPSOL. (When MSGLVL > 0, a short description

of INFORM is printed.) The possible values of INFORM are:

INFORM Definition

< 0 The user has set MODE to this negative value in CONFUN or OBJFUN.

0 X satisfies the first-order optimality conditions, i.e., the projected gra-

dient and the active constraint residuals are negligible, and the La-

grange multipliers indicate optimality.

1 No feasible point could be found for the linear constraints and bounds.

2 No improved point for the merit function could be found during the

final line search.

3 The limit of ITMAX major iterations was reached.

4 Extremely small Lagrange multipliers could not be resolved.

5 A descent direction for the merit function could not be found.

9 An input parameter is invalid.

ITER is an integer that gives the number of major iterations performed.

C is a real array or dimension NROWJ that contains the values of the nonlinear constraint

functions C(i), i = 1 to NCNLN, at the final iterate. If NCNLN = 0, .C is not accessed by
NPSOL.

CJAC is a real array of dimension (NROWJ,N) that contains the Jacobian matrix of the nonlinear

constraint functions at the final iterate, i.e. CJAC(i,j) contains the partial derivative of

the i-th constraint function with respect to the j-th variable, i = 1 to NCNLN, j = 1

to N. If NCNLN = 0, CJAC is not accessed by NPSOL. (See the discussion of CJAC under

CONFUN above.)

CLADA is a real array or dimension NCTOTL that contains the final multiplier estimate for every

constraint (i.e., the multipliers or the final QP subproblem). The ordering of CLANDA
is the same as that given above for BL. If the j-th constraint is defined as "inactive"

by the ISTATE array, CLAMDA(j) should be zero; if the j-th constraint is an inequality

active at its lower bound, CLAMDA(j) should be non-negative; if the j-th constraint is an

inequality active at its upper bound, CLAMDA(j) should be non-positive.

OBJF is the value or the objective function F(x) at the final iterate.

OBJGRD is a real array or dimension N that contains the gradient of the objective function.

'I
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7. WORKSPACE PARAMETERS

1W is an integer array of dimension LENIN, which provides integer workspace for UPSOL.

LENIN is the dimension of IV, and must be at least 2N.

V is a real array of dimension LENW, which provides real workspace for NPSOL.

LXNI is the dimension of V, and must be at least 2N2 + N(NCOM + NROWJ + 6) + 2NCON + NROVA +
max(ION + 2NCON + NROA + NROVJ, 5N + 4NCON), where ICON = max(l, NCLIN + NCNLN).

An overestimate of this number is 2N2 + M(NCON + NROVJ + 16) + 6MCON + 2NROVA + NRowJ.

If MSGLVL > 0, the amount of workspace provided and the amount of workspace required
are printed. As an alternative to computing LENW from the formula given above, the user may

prefer to obtain an appropriate value from the output of a preliminary run with a positive value

of MSGLVL and LEMi set to 1 (NPSOL will then terminate with INFORM 9).

'"-4 , "5 .'," . . "".. . . .
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8. AUXILIARY SUBPROGRAMS AND LABELLED COMMON

The auxiliary subroutines used by IPSOL may be divided into three groups. T1'he first group

includes the following subroutines, which are not part of the QP package:

GETPTC NPCORE NPGETC NPGETF
NPGLF NPHESS NPIQP NPPRT

NPQPGN NPRHO NPSRCH NPTQ

RIBFGS RlMOD.

The second group of subroutines - those used by the QP package - are:

ADDCON ALLOC WDERT BNDALF
CHKDAT DELCON FINDP GETLAM

LPBGST LPCORE LPCRSH LPDUMP
LPGRAD LPPRT MOVEX QPCHKP

QPCOLRt QPCORE QPCRSH QPDUMP
QPGRAD QPPRT PRTSOL RSOLVE

TQADD TSOLVE ZYPROD.

NPSOL also uses the basic linear algebra subroutines

AXFY CONDVC COPYhX COPYVC
DOT DSCALE ELM ELMGEN

ETAGEN QUOTNT REFGEN ROT3

ROTGEN SCMOVE V2NORM ZEROVC

and the subroutine MCHPAR, which defines machine-dependent constants (see Section 11).

* The subroutines in the NPSOL package use the following labelled COMMON areas:

SOLMCH (15 REAL variables; see Section 11)
SOLICM (3 INTEGER variables)

SOL3CM (4 INTEGER variables)

SOWNC (10 REAL variables)
SOL1LP (15 INTEGER variables)

SOLINP (30 INTEGER variables)

SOL2NP (2 INTEGER variables).
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S IUDESCRIPTION OF THE PRINTED OUTPUT

The following is a description of the terse line printed at each major iteration if the last two

digits of MSGLVL > 5. The printout from the QP subroutines is described in Gill et al. (1983a).

All quantities are evaluated at the end of the iteration.

* 17 is the major iteration count, k.

ITQP is the number of minor iterations needed to solve the QP subproblem.

STEP is the step ak taken along the computed search direction.

NM is the total number of evaluations of the problem functions.

OBJECTIVE is the value of the objective function, F(zk).

BND is the number of bounds in the predicted active set.

LC is the number of linear constraints in the predicted active set.

MC is the number of nonlinear constraints in the predicted active set.

NCOLZ is N minus the number of constraints in the predicted active set.

NORM GFREE is the norm of the gradient of the objective function with respect to the

free variables (not printed if ORTHOG is .FALSE.).

NORM QTG is a weighted norm of the gradient of the objective function with respect

to the free variables (not printed if ORTHOG is .TRUE.).

NORM ZTG is the Euclidean norm of the projected gradient.

COED H is a lower bound on the condition number or the Hessian approximation,

i.e. a bound on cond(JI) = cond(R TR).

COED T is a lower bound on the condition number of the matrix of predicted

active constraints.

NORM C is the norm of the vector of constraint violations and residuals of the

constraints in the predicted active set.

RHO is the penalty parameter used in the augmented Lagrangian merit func-

tion.

- - _ L - " . . . - . . . ".. " "" " '" " ." . . - "
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CONV is a four-letter indication of the status of the four convergence tests;

each letter is "T" if the test is satisfied, and "F" otherwise. The four

tests indicate whether: (a) the projected gradient is small; (b) the active

constraint residuals are small; (c) the multipliers indicate optimality; (d)

the last change in X was small.

U refers to the quasi-Newton update of R to obtain a new estimate of the

Hessian. U is 1 if the update was performed, and 0 if no update occurred.

The following is a description of the solution output of NPSOL. Note that names are automati-

eally assigned to each variable and constraint.

The following printout is given for each variable z.

VARIABLE is the name (VARBL) and index j, j - 1 to N, of the variable.

STATE gives the state of the variable (FR if not in the working set, EQ if in

the working set as a fixed variable, L if in the working set at its lower

bound, and UL if in the working set at its upper bound). If VALUE lies

outside the upper or lower bounds by more than FEATOL(j), STATE will

be " +" or "--" respectively.

VALUE is the value of the variable zi at the final iteration.

LOWER BOUND is the lower bound BL(j) specified for the variable.

UPPER BOUND is the upper bound BU(j) specified for the variable.

LAGR MULTIPLIER is the value of the Lagrange multiplier for the corresponding bound

constraint. This will be zero if STATE is FR. If X is optimal and STATE is

LL, the multiplier should be non-negative; if STATE is UL, the multiplier

should be non-positive.

RESIDUAL is the difference between the variable and its nearer bound.

The following printout is given for each constraint.

LINEAR CONSTR is the name (LNCON) and index i, i = I to NCLIN, of a linear constraint.

NONLNR CONSTR is the name (NLCON) and index i, i = 1 to NCNLN, of a nonlinear con-

straint.

S.A
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STATE is the state of the constraint (FR for a constraint not in the working set,

EQ for an equality in the working set, LL for an inequality constraint

in the working set at its lower bound, UL for an inequality constraint

in the working set at its upper bound). STATE will be "++" or --

respectively if VALUE lies outside the upper or lower bounds by more

than its feasibility tolerance.

VALUE is the value of the constraint at the final point.

LOWER BOUND is the specified lower bound for the constraint.

UPPER BOUND is the specified upper bound for the constraint.

LAGR MULTIPLIER is the value of the Lagrange multiplier. This will be zero if STATE is FR.

If X is optimal and STATE is LL, the multiplier should be non-negative;

if STATE is UL, the multiplier should be non-positive.

RESIDUAL is the residual of the constraint with respect to its nearer bound, i.e.,

the difference between VALUE and the nearer of the two bounds.

..............-. . . . . . . . .. . . . . . .'o..
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10. ERROR RECOVERIY

The input data for UPSOL should always be checked (even if NPSOL terminates with the

value INFORM = 01). Two common sources of error are uninitialized variables and incorrect

gradients, which may cause underflow or overflow on some machines. Tile user should check that
all components of A, BL, BU, FEATOL and X are defined on entry to NPSOL, and that OBJFUN and

CONFUN compute all relevant components of OBJGRD, C and CJAC.

The present version of NPSOL contains no procedure for checking the computed gradients.
Incorrect gradients may lead to termination with INFORM = 2, 3 or 5.

Other error conditions may arise as follows.

Termination Recommended Action

Underflow If the machine parameter indicating an underflow check (WMACH(9)) is

zero, floating-point underflow may occur occasionally, but can usually be

ignored. To avoid underflow, set WMACH(9) to a positive value; however,
this will lead to a noticeable loss of efficiency. If underflow continues to
occur for no apparent reason, contact the authors at Stanford University.

Overflow If the printed output before the overflow error contains a warning about

serious ill-conditioning in the working set when adding the j-th con-

straint, it may be possible to avoid the difficulty by increasing the
magnitude of FEATOL(j), and rerunning the program. If the message

recurs even after this change, the offending linearly dependent constraint
must be removed from the problem. If overflow occurs in one of the

user-supplied routines (e.g., if the nonlinear functions involve exponen-
tials or singularities), it may help to specify tighter bounds for some of

the variables (i.e., reduce the gap between appropriate 1i and u,). If
overflow continues to occur for no apparent reason, contact the authors

at Stanford University.

INFORM 1 A feasible point could not be found for the bounds and linear constraints.

This exit occurs if there is a failure in the LP phase of any QP subproblem

(see Gill et al., 1983a). The most likely reason for this condition is that

the linear constraints and bounds are incompatible or inconsistent; if
so, NPSOL will terminate during the first major iteration. In order for

a feasible point to exist, the constraints must be re-formulated, or the

corresponding components of FEATOL must be re-defined, as discussed in

Gill et al. (1983a). Another possibility is that dependencies among the

constraints and bounds have led to cycling in the IP phase; this will

.. :. .. -.. . .. . . .. ,. . .-- .. . . . .. . .. ., . . .. . . I , . . , - . -, - , : .
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always be the case if NPSOL terminates with INFORM = I after the first

major iteration.

INFORM = 2 A sufficient decrease in the merit function could not be attained during

" the final line search. This sometimes occurs because an overly stringent

accuracy has been requested, i.e., FTOL is too small; in this case the

final solution may be acceptable despite the non-zero value of INFORM

(see Gill, Murray and Wright, 1981, for a discussion of the attainable

accuracy). If the projected gradient at the final point is not small, the

computed gradients may be incorrect. Another possibility is that the

search direction has become inaccurate because of ill-conditioning in the

Hessian approximation or the matrix of constraints in the working set;

either form of ill-conditioning also tends to be reflected in large values of

ITQP (the number of iterations required to solve each QP subproblem).

If the condition estimate of the Hessian (COD H) is extremely large, it

may be worthwhile to try a warm start at the final point with COLD set

to .FALSE., ISTATE unaltered, and R set to the identity matrix. If the

matrix of constraints in the working set is ill-conditioned (i.e., COD T

is extremely large), it may be helpful to run NPSOL with relaxed values

of the components of FEATOL corresponding to nearly dependent con-

straints. (Constraint dependencies are often indicated by wide variations

in size in the diagonal elements of the matrix T, whose diagonals will be

printed if the last two digits of MSGLVL > 30.)

INFORM - 3 If the algorithm appears to be making progress, the value of ITMAX may

be too small. If so, increase ITMAX and rerun NPSOL (possibly using the

warm start facility). If the algorithm seems to be "bogged down", the

user should check for incorrect gradients or ill-conditioning as described

above under INFORM = 2. Note that ill-conditioning in the working set is

sometimes resolved automatically by the algorithm, in which case per-

forming additional iterations may be helpful. lowever, ill-conditioning

in the Hessian approximation tends to persist once it has begun, so that

allowing additional iterations without altering R is usually inadvisable. If

the constraint violations have not been significantly reduced, the prob-

lem may have no feasible point.

INFORM - 4 A guaranteed procedure for resolving extremely small Lagrange multi-

pliers has not been included in NPSOL, since it would be inherently com-

binatorial (see Gill, Murray and Wright, 1981, for further discussion).

In some cases, the difficulty may be avoided by removing certain active
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constraints with very small multipliers from the problem, and rerunning

NPSOL.

INFORM 5 5 With exact arithmetic, the search direction should always be a descent

direction for the merit function. If this value of INFORM occurs, the com-

puted gradients may be incorrect, or ill-conditioning may have destroyed

thr- accuracy of the search direction. The user should check for these

cond'tions as described above under INFORM - 2.

k.2
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11. IMPLEMENTATION INFORMATION

This program has been written in ANSI (1966) Fortran and tested on an IBM 3081 computer

using the WATFIV Compiler, Version 1, Level 6. All subroutines in NPSOI. are PFORT-

compatible (Ryder, 1974), except for some A2 Hollerith specifications.

At the beginning of NPSOL, the subprogram MCHPAR is called to assign various machine-

dependent parameters. These parameters are stored in the array WMACH(15) in the labelled COMMON

block SOLMCH.

The specification of MCHPAR is

SUBROUTINE MCHPAR

REAL WMAQ

COMMON /SOLMCH/ WMACH(15)

The first eleven components of the REAL array WMACH must be set in MCHPAR. The components

of WMACH are defined as follows.

Definition

WMACH(1) is NEASE, the base of floating-point arithmetic.

WMACH(2) is NDIGIT, the number of NBASE digits of precision.

WACH(3) is EPSUCH, the floating-point precision.

WMACH(4) is RTEPS, the square root of EPSMCH.

WMACH(5) is FLMIN, the smallest positive floating-point number.

WMACH(6) is RTMIN, the square root of FLEIN.

WACH(7) is FLMAX, the largest positive floating-point number.

WMACH(8) is RTMAX, the square root or FLUAX.

WMACH(9) is UNDFLI, which specifies whether or not NPSOL should chock for

underflow in certain computations. If UNDFLW = 0, no underllow

checking will be performed. If UNDFLW is set to a positive number,

NPSOL will check for underflow and will replace too-small quantities

by zero. Note that NPSOL will run faster if no underflow checking

takes place.

WMACH(10) is NIN, the file number for the input stream.

WMACH(I I) is NOUT, the file number for the output stream.
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The rollowing version or MCHPAR (which is provided I)y the Systemuis Optimia;tiol LaboraLory)

contains the parameters associated with double precision on a machine ii tihe IBM 370 series.

The user ,must substitute a version of UCHPAR thit is appropriate Ior the nmahine to be used.

I

SUBROUTINE CHPAR
C

DOULE PRECISION IIIACH
C /SOLMEH/ IIACHI15)

C
C MCHPAR IST DEFINE THE RELEVANT MACHINE PARAMETERS AS FOLLOWS.
C NIACHI,) = HBASE = BASE OF FLOATING-POINT ARITHMETIC.
C WIACH(Q) = I)IGIT = NO. OF BASE NKACH(I) DIGITS OF PRECISION.
C WIACHI(3) EPSMICH = FLOATING-POINT PRECISION.
C IUACH(4) z RTEPS = SQRT(EPSHCH).
C IIACH(5) = FLhIN StALLEST POSITIVE FLOATING-POINT NLMBER.
C tIMACH(6) a RThIN x SQRT(FLJIN).
C IO1ACH(7) a FLMAX z LARGEST POSITIVE FLOATING-POINT NUMBER.
C MIACH(8) = RTMAX = SQRT(FLtAX).
C HIACH(9) = UNDFLW m 0.0 IF UNOERFLOW IS NOT FATAL, *VE OTHERWISE.
C IW1ACH(10) : NHIN STANDARD FILE NUMBER OF THE INPUT STREAM.
C WIACH( 1) = NOUT = STANDARD FILE IUMER OF THE OUTPUT STREAM.
C

INTEGER NBASE, NDIGIT, NIN, NOUT
DOUBLE PRECISION DSQRT

C
NBASE : 16
NOIGIT = 14
IWMACH( I I NBASE
WMACH(Z) : NOIGIT
WIMACH(3) = WMACH(1I*I1( - NOGIT)
IIACH(4) = DSQRT(WIACH(3))
k IACH(S) = WMACHIl)It*I-62)

WIACH(6) = DSQRT(W1ACH(5))
W41ACH(7) = WIACH(EI)*J61
141ACH(8) = DSQRT(MIACH(7))
WIACH(9) = 0.OD'0

HOUT =6
WMACH(10) a NIH
WfAC(11) = NOUT

C
C ---- IN MATFIV, ALLOW UP TO 100 UDERFLOWS.
C ---- CALL TRAPS 1 0,0,100

RETURN
C
C END OF NCNPAR

END

::b
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The values of NBASE, NDIGIT, EPSMCH, FLMIN and FLMAX for several machines are given in the

following table, for both single and double precision; RTEPS, RTMIN and RTMAX may be computed

using Fortran statements. The values NIN and NOUT depend on the machine installation.

For each precision, we give two values for EPSUCH, FLMIN and FLMAX. The first value is a

Fortran decimal approximation of the exact quantity; use or this value in MCHPAR should cause

no difficulty except in extreme circumstances. The second value is the exact mathematical

representation.

Table of machine-dependent parameters

Variable IBM 360/370 CDC 6000/7000 DEC 10/20 Univac 1100 DEC VAX

Single Single Single Single Single

NBASE 16 2 2 2 2

NDIGIT 6 48 27 27 24

IPSMCH 9.54E-7 7.11E-15 7.46E-9 1.50E-8 1.20E-7

1 16 - 5 2 - 4 7  2-27 2 - 26 2-23

FLMIN 1.0E-78 1.0E-293 1.0E-38 1.0E-38 1.OE-38
16 -

_ _ 2 - 9 7 5  2- 129 2-129 2 8l

FLMAX 1.0E+75 1.0E+322 1.OE+38 1.OE+38 1.0E+38
__ _ 1063(1-16-s) 21070(1-2-4s) 2127(1-2-27) 2127(1-2 - 27) 2127(2-24)

Variable IBM 360/370 CDC 6000/7000 DEC 10/20 Univac 1100 DEC VAX

Double Double Double Double Double

NEASE 16 2 2 2 2

NDIGIT 14 96 62 61 56

EPSMCH 2.22D-16 2.53D-29 2.17D-19 8.88D-19 2.78D-17

16-13 2-95 2-62 2-60 2-55

FLMTN 1.OD-78 1.OD-293 1.OD-38 1.OD-308 1.OD-38

16-65 2- 975  2-129 2-1025 22

FL.AX 1.0i)+75 1.OD+322 1.OD+38 1.OD+307 1.0D+38
1663(1-16-14) 21070(1-2-96) 2127(1-2-62) 21023(1-2-61) 2127(1-2-56)

~k~fiL~L **.,**.*.§*..** . ".
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112. EXAMPLE PROGRAM AND OUTPUT

This section contains a listing and the computed results from a sample main program that

calls IPSOL to solve one version of the so-called "hexagon" problem (a different formulation is
given as Problem 108 in Hock and Schittkowski, 1981). The problem is to determine the hexagon
of maximum area such that no two of its vertices are more than one unit apart (the solution is

not a regular hexagon).
All constraint types are included (bounds, linear, nonlinear), and the Hessian of the Lagrangian

function is not positive definite at the solution. The problem has nine variables, non-infinite

bounds on six of the variables, four general linear constraints, and fifteen nonlinear constraints.

The objective function is

F(m) = -z2z6 + zI7 - Z3z7 - Z5Z + Z4Z + z3Zs.

The bounds on the variables are

zi O__0, zs.__O, :ss 0, z? 0, zo 0, and z!<0.

Thus,

Is=( 0, -c, -c, -c, 0, 0, 0, -c, -c)r

u8= (+oo, +0o, +0o, +00, +00, +00, +00, 0, 0)7.

The general linear constraints are

z2-Z1 !0, z3-2 0, Z3-Z 4  0, and z4-z5 >_0.

Hence,(0) -1 1 0 0 0 0 0 0 0) +0)
0 0 -1 1 0 0 0 0 0 0 +00

tL(J= 0-I 1 0 =I, and u,=
0 0 0 1 -1 0 0 0 0 0 +00

0 0 0 0 1 -1 0 0 0 0 +00

The fifteen nonlinear constraint functions are

,(z) -( -of+C2 (Z)( )-(:,-:2)'+(Z7 -:s)2, c(+)-( Z 2+4,

c4(Z) - (X3 -) +(Z - ) C(Z) - (4 - 2)"+ (Z8 - ,)', Cs(:) - (2 -, -Z

c 2() - + , c,,()-(:4 -:)' +(:,-:,)', c15(:)-:j+ :.

2
p
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(For most applications, it would be preferable to replace the tenth nonlinear constraint (z3 2 1)
by the bounds -1 < 23 < 1.

The nonlinear constraints are all of the form

c(z) < 1, i = 1,...,15;

hence, all components of IN are -oo, and all components of u, are 1.

The starting point zo is

ZO = ( .33, .67, 1.1, .67, .33, .33, .67, -. 33, -. 67 )T,

and F(zo) = -1.4333 (to five figures). The optimal solution (to five figures) is

z = (.060947, .59765, 1.0, .59765, .060947, .34377, .5, -. 5, -. 34377 )T

and F(z*) = -1.34996. (The optimal objective function is unique, but is achieved for other values

of 2.) Six nonlinear constraints are active at * The sample solution output is given later in this
section, following the sample main program and problem definition.

L,
Ko¢
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C
C EXAMPLE PROGiAM ran .fhOUTEm Nw
C DOUBLE PRECISION VERSION I.I. APRIL 19053.
C THE VALUES OF THE PARAMETERS EPSAF, FTOLs AND FEATOL ARE
C APPROPRIATE FOR A MACHINE ITH A PRECISION OF IS DECIMAL DIGITS.
C *Wu*M uWE lKtS4 4iH~guItlIHI*euu*8uum.lmti w~*, HH....u..1..== ==

I INTEGER Is INFORM, ITER, IThAX, J, LIWORK, LORK
2 INTEGER NSGLVLv N, NCLIH, WCHLN, NCTOTL
3 INTEGER NOUT, NONA, iEOW, INRO. tSTATE
4 INTEGER ISTATE(28)"
5 INTEGER IWORKI 50)
SEDOUBLE PRECISION BIHD, EPSAF, EPIIC, RTEPS, ETA, FTDL, 0BJF

7 DOUBLE PRECISION A59), SLS), SWa(28), FEATOL128)
8 DOUBLE PRECISION C(20), CJAC120,9), CLADA(Z8)
9 DOUBLE PRECISION OBJGRD(9) 1(109), X(9)

I DOUBLE PRECISION WORK(ISO)
II DOUBLE PRECISION OSQRT
12 DOUBLE PRECISION ZERO. ONE
13 LOGICAL COLD, FEALIN, ORTHOG
14 EXTERNAL OSJFU. CONFUN
15 DATA ZERO , ONE

U 0.0D*0, I.0O0/
C
C SET THE DECLARED ARRAY DIMENSIONS.
C NONA x THE DECLARED RON DIMENSION OF A.
C NR#OJ a THE DECLARED RON DIMENSION OF CJAC.
C HROW a THE DECLARED RON DIMENSION OF R.
C LuNONK a THE LONGTH OF THE INTEGER WORK ARRAY.
C LUWRK a THE LENGTH OF THE SOUBLE PRECISION WORK ARRAY.
C

16 NIENA a 5
17 )M ato 820
18 NROi a 10
19 LINO1= a 50
20 U .1006

C
C SET THE APPROXIMATE HACNINE PRECISION.
C

21 EPSIM xH 1.00-15
C
C SET THE PROBLEM DIMENSIONS.
C N z THE NUMBER OF VARIABLES.
C NCLIN a THE IUMER OF GENERAL LINEAR CONSTRAINTS (MAY BE O).
C NCNLN a THE UIMIER OF NONLINEAR CONSTRAINTS (PAY BE 5).
C NCTOTL a THE TOTAL NUMER OF VARIABLES AND CONSTRAINTS.
C (THE ARRAYS ISTATE, BL, W, CLAISA 15MST BE AT LEAST
C THIS LONG.)
C

22 N :9
23 ICLIN 4*
2 NCHLW 15
2s NCTOTL N * NCLIN 4 NCNL

C
C ASSIGN THE DATA ARRAYS.
C BOUND$ .GE. BIGIND WILL BE TREATED AS PLUS INFDNTY.
C @16 .1. - BIG6 WILL U TREATED AS NOW DiUITNEr.
r 10UT 8 THE UIST NUMIER FOR PRINTING.

* ,,. 1o .' .' ; ., ., ., ., ... -. . ...o . ... . . ... . . . . . . .., .-.- , ., .-/ , . .. . - . . ., .. ., -..
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C A a THE SENERAL CONSTRAINT MATRIX.
C SL a THE LOWER BOUNDS ON X, AUX AMC C(X).
C U z THE UPPER BOUNDS ON X, A*X AND CIX).
C X z THE INITIAL ESTIMATE OF THE SOLUTION.
C

ab6 HOUT -z 6

27 BIGOHD z t.O0+lO
28 DO 30 J = I, CTOTL
29 BLJ) x -BIND
30 BUIJ) • B1B6D
31 30 CONTINUE
32 BLU) z ZERO
33 BLI5) c ZERO
34 BL61) a ZERO
35 BL7) a ZERO

C
C SET LONER BOUNDS OF ZERO FOR THE FOUR LINEAR CONSTRAINTS.
C

36 BL( O) x ZERO
37 BL(II) z ZERO
38 BL( 12) a ZERO
39 BL(13) a ZERO

C
40 BU(S) z ZERO
41 BU(9) = ZERO

C
C SET UPPER BOUNDS OF ONE FR ALL 15 NONLINE CONSTRAINTS.
C

42 00 40 J z 14, 2
43 8UIJ) z ONE
44 40 CONTINUE

C
45 X(l) • .330+l
46 Xl2) J .67D#0
47 X(31 I.ID#O
48 Xl4) .67D#9
49 X(S) ..330'*
so X(61 • ,330#0
51 X(7) a .67D#*
52 X(S) a -.330*0
53 X(9) a -. 670#0

C
$4 00G0 J Is 1N
55 DO0 1 a It, CLIN
56 A(IJ) z ZERO
57 50 CONTINUE
se 60 CONTINUE
59 AIl,1) a -ONE
60 A11,2) a ONE
61 A(2,2) a -ONE
62 A(2,3) a ONE
63 A(3,3) a ONE
64 A(3,4) a -ONE
65 A(44,) a ONE
88 A(4,5) a -ONE

C
C PRIT THE DATA.
C

67 WITE (OUT, at@*)
6800 70 1 tol NCLIN
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69 WRITE (NOUT. 22001 1, (A(IJ)t J1I.N)
70 70 CONTINUE
71 WRITE IWOUT, 2300) (BL(J), JxIoNCTOTL)
72 WRITE (NOUT, 2400) (BU(J), J21,NCTOTL)
73 NRTE (NOUT, 2500) ( X(J), JtH)

C
C
C ALLOW UP TO SO MAJOR ITERATIONS TO FIND A SOLUTION.
C

74 ITHAX z 50
C
C ASK FOR BRIEF OUTPUT EACH MAJOR ITERATION, AND A FULL PRINT-OUT OF
C THE FINAL SOLUTION.
C

75 MS;LVL = 10
C
C SET THE ABSOLUTE PRECISION OF THE OBJECTIVE AT THE STARTING POINT.
C

76 NSTATE a I
77 CALL OBJFUN( 2o No X, OSJF, OBJGRO. HSTATE )
78 EPSAF = EPSICH * DABS( OBJF )

C
C USE A SLACK LINESEARCH.
C SET THE REQUIRED NIBER OF CORRECT FIGURES IN THE OPTIMAL OBJECTIVE.
C THE VALUE CHOSEN HERE (FTOL 1 30 EPSIICH) ASKS FOR ALMOST FULL
C PRECIS1UN IN OBJF.
C

79 ETA a 0.90*0
80 FTOL = I0.0D#O U EPS#lCH

C
C AT THE SOLUTION, ANY CONSTRAINT MAY BE VIOLATED BY AS IlUCH AS
C THE SQUARE ROOT OF THE MACHINE PRECISION.
C

at RTEPS a DSQRT( EPSICH 3
82 O0 80 J 2 I, NCTOTL
83 FEATOLIJ) = RTEPS
84 80 CONTINUE

C
C A COLD START 1S NEEDED FOR THE FIRST CALL TO HPSOL.
C START THE NONLINEAR ITERATIONS AT A POINT THAT IS FEASIBLE WITH
C RESPECT TO THE LINEAR CONSTRAINTS AND BOUNDS.
C USE AN ORTHOGONAL FACTORIZATION OF THE MATRIX OF CONSTRAINTS
C IN THE WORKING SET.
C

as COLD .TRUE.
86 FEALIN x .TRUE.
a7 ORTHOS x .TRUE.

C
C

C SOLVE THE PROBLEM.
C

&a CALL NPSOL( ITMAX, MISLVL, N,
* NCLIN, NCNLN, NCTOTL, HROWAP IRNWJ, N6ONR,
* 3BBND, EPSAF, ETA, FTOL,
*I A, 8L, EU, FEATOL,
*I CONFUN, OSJFUN, COLD. FEALIN, ORINOS,
I INFORM, ITER, ISTATE,
SC, CJAC, CLMDAOOJF, ObJ.i Is X,

* 1[NORK, LINORK, NORK, LOW I
U.
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C TEST Fa AN ERO CONDITION.
C

89 IF (DoomI .T. 6) To 909
C
C
C THE FOLLONINS 1S FOR ILLUSTRATIVE PURPOSES ONLY.
C NE O A MAR" START WITH THE FINAL HOPKING SET AMU R OF THE PREVIOUS
C RUo, BUT HTH A SLIGHTLY PERTURBED STARTING POINT.
C

90 0 Ice J I, N
91 XtJ) = X(J) + 0.050+0
92 100 CONTINUE

C
C RESET THE ABSOLUTE PREC1SION OF THE OBJECTIVE FUiCTION.
C

93 EPSAF z EPIH * DABS( OBJF)
C

94 COLD a.FALSE.
9S I1GLVL 5 5
96 WRITE (NOUT, 26003
97 WRITE (HOUT, 2500) (X(J), J1lH)

C
96 CALL HPSOLt IlItAX, ISSLVL, N,

* HCLIN, NCNLNo NCTOTL, NMA, iUOKJ, NIOM,
* SBGBHO, EPSAF, ETA. FTOL,
I A, L, 1BU, FEATOL,
0* CONFUH, O@JFUH, COLD. FEALIN, ORTHO4,
U INFORM ITERv ISTATE,
* C, CJAC, CLNUA, OSIF, OBJ1, R, X
o* ZIORK, LINORK, HORK, UIORK 3

C
99 IF (INFORM .6T. 06) o TO 900

100 STOP
C
C ERROR EXIT.
C

101 900 MPITE (NOUT, 3000) INFORM
102 STOP

C
103 t100 FOIMAT(/ IH ROWS OF A.)
104 2200 FORMAT(/ (IX, 13, 4X, 9F8.2))
105 2300 FORMAT(/ 1414 LONER BOUNDS. / (IX, IP71O.))
106 2*00 FORMAT(/ 141H UPPER BOUNDS. / (IX, IP7EI.23)
107 2500 FORMAT(/ 12H INITIAL X. / (IXP 7FIO.2))
108 2600 FORIIAT(//4*6 A RUN OF THE SAME EXAMPLE WITH A WARN1 START.... )
109 3000 FOIIAT(/ 3211 iPSOL TERMINATED WITH INFORM a, 13)

C

C 0N OF THE EXAMPLE PROGRAM FOR NPSOL.
IeI END

III SUINOUTINE OBJFUN( MODE, N, X, OJF. OBJIPO, HSTATE I
112 INTEGER NODE. , NSTATE
113 DOUBLE PRECISION OBJF
114 DOUSLE PRECISION X(N), OSJGRD(N)

C
C ------------------------------------------------------------
C BJFIIN COGPTES THE VALUE AND FIRST DERIVATIVES OF THE NONLINEAR
C AJECTIVE FUNCTION.
C------------------------------------------------------------------

log IJF 3 - X(t)X(6) * X(IX(7I - X(3)*Xl?) - X(s)XO),
* + X(41*X(9) * Xt3)3x(6)

..
4 -; , ., . ... . . " .2 -: .. .. . . . .... .. .. ... ...... .. ... .. • . . . .. . . . . .- . .. . .. . .- . . - . - . . . .- .
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C
116 OBJUDI() a X(?)
117 OBJOD(Q) a - X(6)
11 OJGRO(3) a - X(?) * X(8)
119 OBJGRD(4) a X(9)
120 OBJGRO(S) z - XIS)
121 OBJERDl6) a - Xlt)
122 OSJ6RO(7) v - X(31 * X(I)
123 OSJGRO(S) a - X(S) * X(3)
124 OBJGRD(9) a X(41
12S RETURN

C
C END OF OBJFUN

126 END

127 SUIROUTINE CONIFUN( 10EU, NCNLN, N, NROJ X, Cs CJAC, HSTATE )
128 INTES!? NODE, NCNU4. N, WOWJ. NSTATE
129 DOUBLE PRECISION X(N). C(14QJ). CJAC(HRONJN)

C
C------------------------------------------------------------------
C CONFU COiPUTES THE VALUES AND FIRST DERIVATIVES OF THE NONLINEAR
C CONSTRAINTS.
C
C THE ZERO ELEMENTS OF JACOBIAN MATRIX ARE SET ONLY ONCE. THIS OCCURS
C DURING TNE FIRST CALL TO CONFUN INSTATE = I).

1306EER1I H I[TEER I, J

131 DOUBLE PRECISION ZERO, TWO
132 DATA ZERO , TWO

U /0.O0*9 2.0040/
C

133 IF INSTATE .NE. I) 0 TO 200
134 DO 12 J a Is N
135 DO I I I Ia NCUL
136 CJAC(I.J) a ZERO
137 110 CONTINUE
138 120 CONTINUE

C
139 oo C(I) a XlI)I t * X(S)ut
140 CJAC I19 1) a THOX(I I)
141 CJAC(I ,6) a TNOX(6)

142 C(2) a IXIE) - X(l))3t * (XI7) - Xi))2*l
143 CJACII t) • - TNOUIXI2) - X(I))
144 CJAC!I,2) a THO'MX(2) - X(I))
145 CJAC(2,6) a - TWOIX(T) - X(6))
146 CJAC12,7) a I1O(X(7) - X(6))

C
147 C(3) a (X(3) - X(I))**I X(6) Wm
148 CJAC(3,l) a - TDO*(X(3) - X(I))
149 CJAC(3,3) • x TW(X(3) - X(I))
ISO CJAC(3,6 ) 0 T0X(6 )

151 C(4) a (X(I) - X(4))W2 * I6) - XIS))**t
152 CJAC(4,) a 1DWDIX(I) - X(41)
153 CJACI4,4) a - TW0(XII) - X(4))
154 CJACI4,6) a IWDIX(6) - X(I))
155 CJAC(4*,81 - lrNo(X(6) - X(I)

+.,.



NI-SOL132 12. EXAMPLE PROC RAM AND OUTPUT

156 Cis) P (X(I) -XIS))"!*t IX16) -X(9))u'!

157 CJACIS,1) x TM'IX(6) - X19))
155 CJAC(S)9 w - TND'IXII) - XI9))

161 C(AC5) a Th(X)* - X(7)3N
162 CJAC(Got) a ThOI()- I)

C

165 CJ(7p2 = XI!)"! XM X )11
I6 CJACI6.2) a ThOU(X!)- t)I
163 CJACI6,7) 2 THD'X17)

C
168 C(8) a (X(4) - XI!1))"! WS XX17)"2
169 CJACI7,2) a - Th0'IX(3) - XI
170 CJAC173 2 TIQ'(X(3) - X(M)

17 CJACI7.7) z TWOUXI)- (

173 ClS 9 *z M IX) - XI 5 1 WE (X(71 X(91I)"2
179 CJACIS,t) R ThOIX(t I - XI)I
173 CJAC(S,51 2 TNO'IXI*) - XI
171 CJAC(S,7) a - ThIXI) - X(9))
177 CJACIS,6) a= ThOSIXIS) - X(1)

C

178 Cl~i) 2 flO'XI) XS)

179 CJACI19) z TUOIX? -X1)

C
176 CIII) z X4 X ISI3)"*2IM

179 CJAC(I1S,8) a TflD'X(O)
C

183 C(I) WSXI) -X3))"2t XIS)"
15 CJAC(1tp31 2 ThD'IX(5) - X3)
16 CJACII1) a TNO'IXI*) - X(11
163 CJAC( II,S9) a Th0'X(S)

C
Ise C13) a (XI)* - X3) 9XI)4'

I"S CJAcII!38 a - WOWXS)-X1)

166 CJ*C 1.) x TIX) - X31) 9 8)0
197 CJACI1!9) r, TWD'X1-9) M

193 CJAI13) ) - XW() - XI)"
19 CJACI13,$) a ThO'X*)-X()
190 CJACII3.S) a THD'IXS)-XM

C
191 CIS*) a IXIS* X)! X9) - IS)
197 CJACI15,51 2 TWD'IXI)-XS)

198 CJACI~s,9I v Th0'X(9)
I" RETRN

C BIG OF CUIUIN
.4 ENS 0

.5..
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ROMSOF A.

1 -1.00 1.00 0.00 0.03 0.0 0.00 0.00 0.00 6.0

2 3.00 -1.00 1.00 0.00 0.00 0.00 0.00 6.00 0.00

3 0.00 0.00 1.00 -1.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.06 1.00 -1.00 0.00 0.00 0.00 0.00

LONER SOND.

0.000-01 -1.000 10 -I.O0 10 -1.060 16 0.000-01 0.00-01 0.000-01
-1.000 10 -1.000 10 0.000-01 0.000-01 0.000-01 0.000-01 -1.00 10
-1.000 10 -I.0 10 -1.000 10 -I.OOD 10 o-1.000 10 -1.000 10 -I.0W 10
-I.000 10 -1.000 10 -1.000 16 -1.000 10 -I.000 10 -1.000 10 -I.000 10

UPPER BOUNS.
1.000 10 1.000 O 1 0 16000 1 1.00 10 1.000 I0 1.000 10 1.000 10
0.000-01 0.000-01 1.000 10 1.000 10 1.000 10 1.000 10 1.000 00
1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00
1.000 60 1.0000. 00 1.000 0 1.000 60 1.0000 1.000 00

[NITIAL X.
0.33 0.67 1.10 0.67 0.33 0.33 0.67

-0.33 -. 07

NORKSPACE PROVIDED TS IN( S) NI 1000).
TO SOLVE PROSLEN1 HE NEED IW1 181, W 600).

n"W ITW STEP IWF OBJECTIVE UHD LC NC HCOLZ NO SFREE NORM ZTS CN C T ORI C RHO CoY U
0 -- O.O0-OI 1 -1.44600 0 ------ -- 2.O50 O0 .-- -- 9.360-01 --
I 8 4.00-01 3 -1.47230 00 0 0 5 4 2.080 O0 9.771-62 1.60 o 3.30 00 6.900-01 0.00-01 FFFF I
2 a 1.00 06 4 -1.34230 0 0 0 4 5 2.000 60 1.670-01 2.20 0 1.30 00 6.910-02 0.00-01 FFTF I
3 1 1.0060 5 -1.33970 00 0 0 4 5 Z.050 00 1.730-01 6.90 00 1.40 00 4.570-02 0.00-01 FFTF I
4 3 1.40 0 7 -1.35470 00 0 0 6 3 2.090 60 1.280-I 6.90 60 3.00 00 1.110-01 0.00-01 FFTF 6
S I 1.00 00 S -1.35600 00 0 0 6 3 t.060 00 3.t0-02 5.50 06 3.00 00 1.690-02 0.00-01 FFTF 1
6 1 1.00 0 9 -1.34980 00 0 0 6 3 2.0500 0 1.080-62 5.60 00 3.00 00 t.370-04 0.00-01 FFTF I
7 1 1.00 00 10 -1.34990 00 0 0 6 3 2.6500 0 7.690-03 7.5D 0 3.00 00 1.290-04 0.00-01 FFTF I
a 1 1.00 00 11 -1.35000 60 0 0 6 3 2.050 00 6.060-03 1.5061 3.000 0 2.430-04 0.00-01 FFTF I
9 1 1.00 00 12 -1.35000 60 0 0 6 3 t.050 00 2.370-03 .O061 3.00 60 1.050-04 0.00-01 FFTF I

10 1 1.00 00 13 -1.35000 60 0 0 6 3 2.050 60 4.150-04 3.00 01 3.00 00 4.&0-06 0.00-01 FFTF I
11 I 1.00 00 14 -I.3500D 00 0 0 6 3 2.050 60 4.570-05 2.40 01 3.00 00 8.110-06 0.00-01 FFTF I
12 I 1.00 60 15 -1.3SOOD 00 0 0 0 3 2.050 00 7.400-06 2.30 0I 3.00 06 3.170-09 0.00-01 FTTF I
13 1 1.00 60 16 -1.35000 00 0 0 6 3 t.050 00 7.430-07 2.3 01 3.00 60 3.400-11 0.00-01 FTTF I
14 1 1.00 00 17 -1.35000 0 0 0 6 3 t.050 00 t.890-08 1.00 01 3.00 00 6.070-13 0.00-01 TTTF 1
1 1 1.00 60 16 -1.35000 00 0 0 6 3 t.0506 0 1.810-09 1.40 01 3.00 0 9.440-15 0.00-01 TTTT I

EXIT NP PASE. DUORII 3 0 NAJITS 15 INFEVAL 3 18 NCEVAL - 18

"C VARIABLE STATE VALUE LOR OUND UPPER BMWHD LAW WITIPLER RESIDUAL

VAR8L I FR 009460-01 0.0600019 Nme 6.6600000 0.60950-01
VADL 2 FR 0.5976493 NONE NONE 0.0000000 0.10000 11
VARBL 3 FR 1.000006 NONE NONE 0.0000000 0.10000 II
VARBL 4 PR 6.5970493 NONE NoEw 0.0000000 0.10000 11
VADL 5 PN 40.60""1110-1 0.0,0000 10m4 0.0n00,0 0.60950-01
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VARSL 6 FR 0.3437715 6.60000 HoNwE 0.0000000 0.3438
VARBL 7 FR 0.5000006 0.0000 NONE 0.0000000 0.S000
VARBL 8 PR -0.5000000 NONE 0.0000000 0.0.00000 0.5000
VARBL 9 FR -0.3437715 NOHE 0.0000000 0.0000000 0.3438

LINEAR CONSTR STATE VALUE LOmER 80UD UPPER BOUND LAOR MJLTIPLIER RESIDUAL

LNCON I FR 0.5367027 0.0000000 NONE 0.0000000 0.5367
U4CON 2 FR 0.4023507 0.0000000 NoN 0.0000000 0.4024
LCON 3 FR 0.4023507 0.0000000 NONE 0.6000000 0.40Z4
-CON 4 FR 0.5367026 0.0000000 NOE 0.0000000 0.5367

NORLNR CONM STATE VALUE LONER BW UPPER BOU0 LAIR IULTIPL.ER RESIDUAL

HLCON I FR 0.1218933 NONE 1.000000 0.0000000 0.6781
HLCON 2 FR 0.3124571 NONE 1.000000 0.0000000 0.6875
HLCON 3 UL 1.000000 NONE 1.000000 -0.83184060-01 -0.42190-14
NLCON 4 UL 1.000000 NONE 1.000000 -0.3202625 -0.39970-14
ULCON 3 FR 0.4727152 NONE 1.000000 0.0000000 0.5273
HLCON 6 FR 0.6071847 NONE 1.000000 0.0000000 0.3928
HLCON 7 FR 0.4118861 NOHE 1.000000 0.0000000 0.5681
HLCON 8 UL 1.000000 NONE 1.000000 -0.1992983 -0.39970-14
NLCON 9 UL 1.000000 NONE 1.000000 -0.3202625 -0.4441D-14
NLCO 10 UL 1.000000 NONE 11000000 -0.3437715 0.0000
NLC N 11 FR 0.4118661 NONE 1.000000 0.0000000 0.S6I
LCON 12 UL 1.000000 NONE 1.000000 -0.831684060-01 -0.44410-14

-LCON 13 FR 0.6071847 NONE 1.000000 0.0000000 0.39*6
NLCCN 14 FR 0.3124571 NONE 1.000000 0.0000000 0.6875
NWLN 15 FR 0.1218933 NONE 1400000 0.0000000 0.8781

EXIT MPSOL - OPTIMAL SOLUTION FOUND.

FINAL NONLINEAR OSJECTIE VALUE ' -1.349963

A RUH OF THE SAME MPLE NMTH A M START....

INITIAL X.
0.11 0.65 1.5 0.65 0.11 0.39 0.55

-0.45 -0.39

NOHKSPACE PROVIDED IS IIK Soh MI 1000).
TO SOLVE PROBLEM WE NEED IN( 18) M( 600).

1114r 11 STEP NUIF OJECTIVE ONO LC NCNCOLZ NO" GFREE NO1M ZT vms N CO T H1MN c RHO COM U
0 -- 0.00-01 1 -1.38430 00 ------ -- 2.090 00 -- -- -- 1.140-01
I 1 .20 00 3 -1.31460 00 0 0 6 3 2.030 00 5.390-02 5.30 02 2.00 00 1.21D-01 0.00-01 FFTF I
a I 1.00 00 4 -1.35170 00 0 0 6 3 2.060 00 1.350-02 9.90 02 1.90 00 5.070-03 0.00-01 FFTF I
3 1.00 00 5 -1.3499 00 0 0 6 3 2.050 00 1.080-02 7.90 01 3.00 00 4.370-0S 0.00-01 FFTF I
4 1 .00 00 6 -1.35000 00 0 0 6 3 2.050 00 4.390-03 7.80 01 3.00 00 1.520-o05 0.00-01 FFTF I
5 1 1.00 00 7 -1.35000 00 0 0 6 3 Z.051 00 1.140-03 4.10 Of 3.00 00 2.120-05 0.00-01 FFTF I
6 1 1.00 00 a -I.35000 06 0 0 6 3 2.050 00 3.130-04 1.90 02 3.00 00 7.220-06 0.00-01 FFTF I
7 1 1.09 0o 9 -#.35060 00 0 0 6 3 2.050 00 4.940-05 5.20 02 3.00 00 3.190-07 0.00-01 FFTF I
S 1.000 is -1.39 0l00 0 0 6 3 2.00 00 2.800-06 7.40 02 3.00 00 1.250-09 0.00-01 FTTF I

9 I 1.00 N I1 -1.356000 0 6 6 3 2.090 0 5.410-08 6.90 02 3.00 00 9.120-12 0.00-01 TTTF I
1 1 1.0 12 -1.350006 0 0 6 3 .I0D 9.160-10 5.40 02 3.00 00 1.830-14 0.00-01 TM1 I
* EXT SW PHASE. INFORM 8 0 NAJITS u 16 WEVAL 12 NCEVAL 12

EXIT MPSOL - OPTVIAL 90LUTION FOUND.

FINAL NOILINEAR OBJECTI VALUE --1.34 #93
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SOL 83-12: User's Guide for SOL/NPSOL: A Fortran Package for Nonlinear
Programming, by Philip E. Gill, Walter Murray, Michael A.
Saunders and Margaret H. Wright

This report forms the user's guide for version 1.1 of SOL/NPSOL, a set of
Fortran subroutines designed to minimize an arbitrary smooth function
subject to constraints, which may Include simple bounds on the variables,
linear constraints and smooth nonlinear constraints. (NPSOL may also be
used for unconstrained, bound-constrained and linearly constrained
optimization.) The user must provide subroutines that define the objective
and constraint functions and their gradients. All matrices are treated as
dense, and hence NPSOL Is not intended for large sparse problems.

NPSOL uses a sequential quadratic programming (SOP) algorithm, In which the
search direction; Is the solution of a quadratic programming (QP) sub-
problem. The algorithm treats bounds, linear constraints and nonlinear
constraints separately. The Hessian of each QP subproblem is a positive-
definite quasi-Newton approximation to the Hessian of an augmented
Lagranglan function. The steplength at each iteration Is required to
produce a sufficient decrease In an augmented Lagranglan merit function.
Each QP subproblem Is solved using a quadratic programing package with
several features that improve the efficiency of an SQP algorithm.
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